Agricultural Drone Industry Insight Report (2021)
I. Industry background (I) From “plant protection drones” to “agricultural drones” As early as 1987, Japan developed the world’s first plant protection drone, selling them in limited quantities the following year. Of the nearly 5 million hectares of arable land in Japan today, over 20% uses plant protection drones to control pests and weeds. Drones have become an important plant protection technology measure in Japan. China’s plant protection drones began to develop in 2007, and in 2010, the 3CD-10 single-rotor gasoline-powered plant protection drone produced by Wuxi Hanhe Aviation was exhibited for the first time at the National Agricultural Machinery Expo. This was the first drone of its kind sold in China, opening the first step of commercializing plant protection drones in the country. In 2012, DJI applied the world’s superior drone technology to agriculture and founded DJI Agriculture in 2015 with the release of the MG-. In 2015, XAG released its plant protection drones and established XAG Agricultural Services. Today, several drone companies are dedicated to providing users with agricultural solutions based on drone technology to drive innovation and progress in global agriculture. With the rapid development of plant protection drones, smarter products have been created to serve a wider range of needs and applications. In addition to spraying pesticides, plant protection can also spread fertilizer, seeds, and feed. As a result, the term “plant protection drone” is gradually being replaced by the broader term “agricultural drone.” Figure 1: Agricultural drones make up the future farm 2021 was a year of rapid development of agricultural drones worldwide, which is a quantitative leap compared to 2020 in terms of the total number of drones and operating areas. Drones are particularly suitable for scenarios where it is difficult to get down to the ground with manual and ground machinery, such as paddy fields, tall straw crops, and mountainous terrain. In Southeast Asia, where rice is a staple crop, drones are gaining recognition from more and more farmers. Operations have grown rapidly, as agricultural drones are suitable for sowing rice fields and controlling pests throughout the crop growth cycle. The application of agricultural drones in flat farmland such as wheat and rice is quickly gaining popularity, and with the continuous improvement of technology, the application has been expanded in complex scenarios such as hilly mountain orchards. Figure 2: Global holdings of DJI agricultural drones In Europe, many vineyards have steep mountainous terrain where ground machinery is not available, so most work is done by hand, with high labor and time costs. In Hallau, in the canton of Schaffhausen in northern Switzerland, the preservation of traditional farming practices also poses a challenge for efficient management of local vineyards. To ensure yields, vineyard managers spray pesticides every season. Previously, this work was mainly done manually by hired workers in an inefficient, physically demanding process. The growing season typically required 8-10 sprays, each of which took more than 10 days, and if not sprayed in a timely manner, grape mold could affect a season’s wine production and harvest, but also vineyard income for years to come. Figure 3: Agricultural drone spraying operation in the mountains of Switzerland Hallau is located in the mountainous northern region, whose terrain was challenging for ground-based vehicles. On some steep slopes, a vehicle can easily tip over, threatening the driver’s safety. The invocation of drone management to maintain the original ecology of the vineyard to the maximum extent is a new attempt to integrate the traditional culture of the local vineyard with modern technology. This was also the first time that Chinese intelligent agricultural equipment entered the local agricultural production in Switzerland. Figure 4: Agricultural drones operating in Swiss mountain vineyards (II) Key concerns for industry development 1. Regulation and policy Agricultural drones, as the name implies, are drones used in agriculture. Their purpose places them in the category of agricultural equipment, which is managed by the agricultural department; when it sprays pesticides, it has potential environmental risks, which are managed by the environmental protection department. At the same time, their operational attributes belong to the aircraft category and is managed by the civil aviation authority. This characteristic of agricultural drones, which is managed by multiple authorities, leads to the fact that laws and policies play an important role in the development of the industry. The management of agricultural drones as agricultural equipment is a common method all over the world, while each country’s management methods differ by some degree. Some countries adopt compulsory certification, some apply for simple written materials, while others use administrative authorization. Nevertheless, it represents the Ministry of Agriculture’s management and approval of agricultural drones. As a kind of aircraft, an agricultural drone is managed by civil aviation authorities of various countries in its operation. There are three common ways of management. The first is to exempt agricultural drones with low-risk operations in the existing legal system, such as the United States. The second is to require drones above 25 kg to carry out a Safe Operation Risk Analysis (SORA). This assessment focuses on operational risk and analyzes and approves the operational risk of individual cases, which is widely used in European countries. The third is to simplify the airworthiness rules of traditional aircraft and generate a simplified version of airworthiness requirements that apply to agricultural drones, such as Brazil, Mexico, and other countries. Agricultural drones are mainly used for pesticide spraying, so the management of pesticides has become the third policy direction to pay attention to. In Japan, for example, the management agency of pesticide preparations for drones is the Agriculture, Forestry and Fisheries Aviation Association. Japan has 382 pesticide formulation registered for agricultural drones.[1] Pesticides registered in Japan for agricultural drones include fungicides, insecticide mixtures, herbicides, and plant growth regulators, and registered crops are mainly rice, wheat, soybeans and so on. Herbicides are only registered in rice fields, and the pesticide forms registered in rice fields are mainly granules and film oil. The application method is to use drones to spread particles and…